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概要
非発散型偏微分方程式を扱うために１９８０年初頭に粘性解が導入されたことが知られている．
非発散型偏微分方程式の典型例としては確率最適制御問題に現れる Bellman 型方程式である．
本研究では，p-ラプラシアン型作用素と呼ばれる非発散型作用素を含むような Bellman型退化楕
円型方程式の粘性解の勾配の内部 Hölder評価を示す．証明の手法については，Improvement of

Flatnessと呼ばれる方法を使う．

1 導入
本研究では，次の Bellman型退化楕円型方程式に対する粘性解の勾配の内部評価を考える：

sup
α∈A

{
−|Du|θα∆N

pα
u− fα(x)

}
= 0 in B1. (1.1)

ここで，B1 := {y ∈ Rn; |y| < 1}を n次元単位開球，u : B1 −→ Rを未知関数，Aを添え字集合，
fα : B1 −→ Rを外力項とする．また，∆N

pα
は normalized pα-ラプラシアンである（定義は後述）．

本研究の目的は，(1.1)の粘性解の内部 C1,σ 評価，即ち勾配の内部 σ-Hölder連続評価を導くこと
である．

1.1 粘性解
非発散型偏微分方程式を扱うために１９８０年初頭に Crandall-Lionsが粘性解を導入した．各変

数について連続である作用素 F : B1 × R× Rn × Sn −→ Rを考える．ここで，Sn は n次実対称行
列全体のなす集合である．方程式

F (x, u,Du,D2u) = 0 in B1 (1.2)

の粘性解の定義は次で与えられる：
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定義 1.1 (粘性解). 上（resp. 下）半連続関数 u ∈ USC(B1)（resp. LSC(B1)）が (1.2)の粘性劣
解（resp. 優解）とは，次の性質が成り立つこととする：

「もし，φ ∈ C2(B1)に対し，u− φが局所最大値（resp. 最小値）を x0 ∈ B1 で取るならば，
F (x0, u(x0), Du(x0), D

2u(x0)) ≤ (resp. ≥)0

が成り立つ．」

u ∈ C(B1)が (1.2)の粘性解とは，uが (1.2)の粘性劣解且つ粘性優解であることとする．

本研究では，退化楕円型方程式を研究するため，退化楕円型作用素の定義を与える：

定義 1.2 (退化楕円型作用素). F : B1 × R × Rn × Sn −→ R が退化楕円型作用素とは，任意の
(x, r, q) ∈ B1 × R× Rn と任意の X ≤ Y となる X,Y ∈ Sn に対し，

F (x, r, q,X) ≥ F (x, r, q, Y )

が成り立つこととする．

退化楕円型方程式は比較的に扱いにくいが，よりよい性質を持つ方程式は一様楕円型方程式であ
る．一様楕円型作用素の定義は次で与えられる：

定義 1.3 (一様楕円型作用素). F : B1 ×R×Rn × Sn −→ Rが楕円定数 0 < λ ≤ Λの一様楕円型作
用素とは，任意の (x, r, q) ∈ B1 × R× Rn と任意の X ≤ Y となる X,Y ∈ Sn に対し，

λ tr(Y −X) ≤ F (x, r, q,X)− F (x, r, q, Y ) ≤ Λ tr(Y −X)

が成り立つこととする．

粘性解理論において，次で与えられる Pucci作用素は非常に重要な役割を果たしている：

定義 1.4 (Pucci作用素). 0 < λ ≤ Λとする．次で与えられる作用素 P± : Sn −→ Rは Pucci作用
素と呼ばれる：

P−(X) := P−
λ,Λ(X) := −λ

∑
µ(X)≤0

µ(X)− Λ
∑

µ(X)≥0

µ(X),

P+(X) := P+
λ,Λ(X) := −Λ

∑
µ(X)≤0

µ(X)− λ
∑

µ(X)≥0

µ(X).

ここで，µ(X)を X ∈ Sn の固有値とする．

注記 1.5. Pucci作用素を用いると一様楕円型作用素は次の不等式で特徴付けられることができる：
P−(Y −X) ≤ F (x, r, q, Y )− F (x, r, q,X) ≤ P+(Y −X)　 (X ≤ Y in Sn).

1.2 p-ラプラシアン型作用素
p-ラプラシアンが p乗エネルギーの最小化問題

min
u∈W 1,p

loc (B1)

1

p

ˆ
B1

|Du|pdx



の Euler–Lagrange 方程式に由来するということがよく知られている．次で与えられる発散型作用素
∆p は p-ラプラシアンと呼ばれる：

∆pu := div
(
|Du|p−2Du

)
.

本研究では，1 < p < ∞の場合のみ考える．形式的に展開すると，次の形が得られる：

∆pu = |Du|p−2

(
∆u+ (p− 2) tr

(
Du

|Du|
⊗ Du

|Du|
D2u

))
.

上述の式において括弧の中身を∆N
p uとおき，∆N

p は normalized p-ラプラシアンと呼ばれ，tug-of-war
game with noise [14]に現れる：

∆N
p u := ∆u+ (p− 2) tr

(
Du

|Du|
⊗ Du

|Du|
D2u

)
.

すると，∆pu = |Du|p−2∆N
p uと書ける．p-ラプラシアンを一般化するために，次の非発散型作用素

を導入し，p-ラプラシアン型作用素と言う：

u 7−→ |Du|θ∆N
p u　 (θ > −1, 1 < p < ∞)

p-ラプラシアン型作用素は最初に Birindelli-Demengel [2]により導入された．

1.3 先行研究
１９８９年に，Caffarelli [8]は次の完全非線形一様楕円型方程式を研究し粘性解の内部 C1,σ 評価

を証明した：
F (x,D2u) = f in B1.

この評価は粘性解理論において非常に重要な結果である．２００４年に Birindelli-Demengelは p-ラ
プラシアン型作用素を導入し，特に特異の場合に注目し比較原理や Liouville型の結果や第一固有関
数の正則性などの結果を示した [2, 3, 4, 5, 6]．Birindelli-Demengelが研究した方程式の典型例とし
ては

|Du|θP−(D2u) = f in B1　 (−1 < θ < 0)

である．２０１３年に，Imbert-Silvestre [10] はImprovement of Flatnessという方法を導入し
次の退化楕円型方程式の粘性解の内部 C1,σ 評価を導いた：

|Du|θF (D2u) = f in B1　 (θ > 0, F は一様楕円型).

Improvement of Flatness に関しては，大まかに言えば目標関数とアフィン関数の差を評価する
ことで C1,σ 正則性を導くという方法である．そして，２０１８年に Attouchi-Ruosteenoja [1] は
Improvement of Flatnessを用い p-ラプラシアン型方程式

−|Du|θ∆N
p u = f in B1　 (θ > −1, 1 < p < ∞)

の粘性解の内部 C1,σ 評価を示した．
本研究も Improvement of Flatness を採用する．Improvement of Flatness の詳しい説明につい

ては第２節の「アイディア」を参照してほしい．



2 主定理
2.1 仮定
本研究では，次の３つの仮定とする．

仮定 A. θα, pα (α ∈ A)を定数とする．

(A1) 全ての α ∈ Aに対し pα > 1且つ p∗ := supα∈A pα < ∞, p∗ := infα∈A pα > 1;

(A2) 全ての α ∈ Aに対し θα > 0且つ θ∗ := supα∈A θα < ∞;

(A3) 全ての α ∈ Aに対し fα ∈ C(B1) ∩ L∞(B1)且つ supα∈A‖fα‖L∞(B1) < ∞.

仮定 B. µ∗ := 1 ∧ (p∗ − 1), µ∗ := 1 ∨ (p∗ − 1)とおくと，次のCordes-Landis型条件 ([15])を満
たすとする:

「ある十分小さな β = β(n) > 0が存在し，µ∗ ≤ (1 + β)µ∗ が成り立つ．」

仮定 C. pα ≥ 2 (∀α ∈ A)または pα ∈ (1, 2) (∀α ∈ A)とする．

最も重要な仮定は B である．B を仮定している理由を説明しよう．１９８９年に，Caffarelli [8]

は Harnackの不等式を示すことで次の Hölder評価を証明した：

定理 2.1 ([8]). f ∈ C(B1) ∩ L∞(B1)とし，u ∈ C(B1)をそれぞれ

P−(D2u) = |f | in B1,　 P+(D2u) = −|f | in B1

の粘性劣解と粘性優解とする．この時，ある定数 C > 0と σ ∈ (0, 1)が存在し，内部評価

‖u‖C0,σ(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖f‖Ln(B1)

)
が成り立つ．但し，C と σ は楕円定数 λ,Λと次元 nのみ依存する．

しかし，定理 2.1の uに対し粘性解でないと一般的には内部 C1,σ 正則性を持たない．正則性を上
げるために，２０２４年に Lee-Yun [13]は Cordes-Landis型条件を仮定し次の結果を示した：

定理 2.2 ([13]). σ ∈ (0, 1), f ∈ C(B1) ∩ L∞(B1)とし，u ∈ C(B1)をそれぞれ

P−(D2u) = |f | in B1,　 P+(D2u) = −|f | in B1

の粘性劣解と粘性優解とする．この時，ある十分小さな定数 β = β(n, σ) > 0が存在し，

Λ ≤ (1 + β)λ

ならば，u ∈ C1,σ(B1/2)であり内部評価

‖u‖C1,σ(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖f‖L∞(B1)

)
が成り立つ．但し，C > 0は λ, σ, nのみ依存する．



Improvement of Flatness Lemmaという補題を示す際に定理 2.2を利用するため，仮定 Bが
必要である（第３節を参照）．

2.2 主結果とアイディア
定理 2.3 (主結果). 仮定 A,B,Cとする．この時，定数 C > 0と σ ∈ (0, 1)が存在し，(1.1)の任意
の粘性解 u ∈ C(B1)は C1,σ(B1/2)であり，内部評価

[u]1+σ,B1/2
≤ C

(
‖u‖L∞(B1) +

(
sup
α∈A

‖fα‖L∞(B1)

) 1
θ∗+1

)
(2.1)

が成り立つ．ただし，θ∗ := infα∈A θα ≥ 0，C と σ は n, p∗, p∗, θ∗, θ
∗ のみ依存する．

Improvement of Flatnessを紹介しよう．まず，Caffarelliの論法 [8]より，

osc
x∈B1

u ≤ 1, sup
α∈A

‖fα‖L∞(B1) ≤ ε0 = ε0(n, p
∗) (SR)

と仮定し議論を進めばよい．理由としては次の命題が成り立つことである：

命題 2.4. 主結果を証明するために，

‖u‖L∞(B1) ≤
1

2
, sup

α∈A
‖fα‖L∞(B1) ≤ ε0 = ε0(n, p

∗)

の下で
[u]1+σ,B1/2

≤ C

を示せばよい．

証明. 任意の τ > 0を取る．スケーリング変換

K := Kτ := 2‖u‖L∞(B1) +

(
ε−1
0 sup

α∈A
‖fα‖L∞(B1)

) 1
θ∗+1

+ τ, v :=
u

K
, gα :=

fα
Kθα+1

を考え，最後に τ −→ 0とすればよい．

次に，暫く (1.1)を忘れ次の摂動をした方程式に注目しその粘性解の同程度連続評価を示す：

sup
α∈A

{
−|Du|θα∆N

pα
u− fα(x)

}
= 0 in B1, (2.2)

∆N
pα;ξw := tr

[(
I + (pα − 2)

Dw + ξ

|Dw + ξ|
⊗ Dw + ξ

|Dw + ξ|

)
D2w

]
.

ここで，ξ ∈ Rnは任意のベクトルである．最後に，(2.2)の粘性解に対しImprovement of Flatness

Lemmaという補題（補題 3.4）を示し，この補題と Iteration の手法を用い主結果を証明すること
ができる．Improvement of Flatness Lemmaに関しては，概略を述べると，評価したい関数と線形
関数の差の振動をある小さな球上で評価するという補題である．
Improvement of Flatness という手法は次で与えられる同値な C1,σ セミノルムと Hölder 連続関
数の特徴づけ（定理 2.6）に基づく（本研究ではこの同値なセミノルムを採用）：



定義 2.5 (同値な C1,σ セミノルム [12]).

[u]1+σ,Br
:= sup

ρ>0,x∈Br

ρ−1−σ inf
l∈P1

‖u− l‖L∞(Bρ(x)).

但し，σ ∈ (0, 1), r ∈ (0, 1),P1 := {l(y) = 〈s, y〉+ t; s ∈ Rn, t ∈ R}である．同値性の証明は [12]を
参照してほしい．

定理 2.6 (Hölder連続関数の特徴づけ [12]). あるM > 0と σ ∈ (0, 1)が存在し，任意のBr(x) ⊂ B1

に対し次を満たす η ∈ Rn があれば，u ∈ C1,σ(B1)である：

osc
y∈Br(x)

(u(y)− 〈η, y〉) ≤ Mr1+σ.

注記 2.7. 平行移動することで，B1 はコンパクトなので内部 C1,σ を導くには，実際，原点における
振動評価

osc
y∈Br

(u(y)− 〈η, y〉) ≤ Mr1+σ

を示せば十分である．また，逆に u ∈ C1,σ(B1)であれば上述の原点における振動評価が成り立つ．

定義 2.5及び定理 2.6があればこそ C1,σ 評価が自然に導かれる．

3 証明の概略
この節では同程度連続評価と Improvement of Flatness Lemma と主結果の証明の概略を述べ

よう．

3.1 同程度連続評価の証明の概略
同程度連続評価を示すには，仮定 B,Cは不必要である．

定理 3.1 (同程度連続評価). 仮定 A と (SR) とする．この時，任意の r ∈ (0, 1) に対し，ある定数
C > 0と γ ∈ (0, 1]が存在し任意の (2.2)の粘性解 u ∈ C(B1)に対し，内部評価

[u]0,γ,Br ≤ C

が成り立つ．但し，C と γ は uと ξ に依存しない．

|ξ|が大きい場合は二重変数法（doubling argument） [11]を利用するが，小さい場合は Imbertが
証明した Harnackの不等式 [9]を使う．

補題 3.2 (|ξ|が大きい場合). uに依存しない定数 ν0 > 0が存在し，|ξ| ≥ ν0 ならば，γ = 1即ち内
部 Lipschtiz評価が成り立つ．

証明. x0 ∈ Br/2 を取り固定する．二重変数法で次の上限を考え，十分大きな定数 L1, L2 > 0が存在
し上限の値が非正であることを示せばよい：

sup
x,y∈Br

{
u(x)− u(y)− L1φ(|x− y|)− L2|x− x0|2 − L2|y − x0|2

}
, L2 :=

16

r2
.



但し，補助関数 φの定義は [10]を参照してほしい．背理法で非正であることを示す．(x, y) ∈ Br×Br

を上限を取る内点とする．Ishiiの補題 [7]と粘性劣解・優解の定義より，任意の δ > 0に対し，ある
αδ ∈ Aが存在し，

− tr(AxX −AyY ) ≤ 2ε0 + δ

が成り立つ．但し，

Ax := I + (pαδ
− 2)

ηx

|ηx|
⊗ ηx

|ηx|
, Ay := I + (pαδ

− 2)
ηy

|ηy|
⊗ ηy

|ηy|
,

ηx := L1φ
′(|x− y|) x− y

|x− y|
+ 2L2(x− x0) + ξ, ηy := L1φ

′(|x− y|) x− y

|x− y|
− 2L2(y − x0) + ξ

であり，X = X(ρ), Y = Y (ρ), 0 < ρ � 1は Ishiiの補題に由来する．Ishiiの補題 [7]により得られ
る行列不等式を利用し ‖Y ‖とX − Y の固有値を評価することができ，評価式を用いると，次の不等
式が導かれる：

C1µ∗L1 −
C2

ρ
− 2(2L2 + ρ)C3 ≤ 2ε0 + δ −→ 2ε0 (δ −→ 0).

但し，C1, C2, C3 > 0は p∗, p
∗, n のみ依存する定数である．故に，ρ := L

−1/2
1 とおき，L1 −→ ∞

とすれば矛盾．

補題 3.3 (|ξ|が小さい場合). |ξ| ≤ ν0 ならば，γ ∈ (0, 1)即ち内部 Hölder評価が成り立つ．

証明. Imbertが導入した条件 [9]を確認し Harnackの不等式 [9]を使えばよい．

3.2 Improvement of Flatness Lemmaの証明の概略
補題 3.4 (Improvement of Flatness Lemma). 仮定 A,B,Cと (SR)とする．ある ρ ∈ (0, 1)が存在
し，任意の ξ ∈ Rn と (2.2)の粘性解 u ∈ C(B1)に対し，次を満たす η ∈ Rn がある：

osc
x∈Bρ

(u(x)− 〈η, x〉) ≤ 1

2
ρ.

証明. 定理 3.1より，Ascoli-Arzelàの定理と背理法を利用すると，次を満たす列 ξm, fm, um と関数
ũ ∈ C(B1)が取れる：

fm −→ 0, ξm −→ 0, um −→ ũ (局所一様), osc
x∈Bρ

(ũ(x)− 〈η, x〉) ≥ 1

2
ρ.

ここで，ξm が有界でない場合は Caffarelliの結果 [8]より簡単なので有界の場合を考える．また，簡
単のため収束先を 0とする．m −→ ∞とすると，ũの満たす極限方程式

sup
α∈A

{
−|Dũ|θα∆N

pα
ũ
}
= 0 in B1

が得られる．実際，ũが次の方程式の粘性解となることを示すことができる：
sup
α∈A

{
−∆N

pα
ũ
}
= 0 in B1. (3.1)

λ = µ∗,Λ = µ∗ の Pucci 作用素を考え (3.1) に定理 2.2 を適用すると，ある σ0 ∈ (0, 1) が存在し
ũ ∈ C1,σ0(B1/2)が示される．故に，定理 2.6と注記 2.7より ρを十分小さく取ると矛盾．



3.3 主結果の証明の概略
補題 3.4を利用し Iterationの手法で主結果を示す．

命題 3.5 (Iteration). 仮定 A,B,C と (SR) とする．ある ρ ∈ (0, 1), σ ∈ (0, 1) が存在し，任意の
(1.1)の粘性解 u ∈ C(B1)と各 k ∈ N ∪ {0}に対し，次を満たす ηk ∈ Rn が存在する：

osc
x∈B

ρk

(u(x)− 〈ηk, x〉) ≤ ρk(1+σ).

証明. 数学的帰納法で示す．次の uのスケーリング変換 uk を考え，uk に対し補題 3.4を適用すれば
よい：

uk(x) := ρ−k(1+σ)
[
u
(
ρkx
)
−
⟨
ηk, ρ

kx
⟩]

.

実際，uk が次の方程式の粘性解となることが示せる：

sup
α∈A

{
−|Duk + ρ−kσηk|θα∆N

pα;ρ−kσηk
uk − gα,k(x)

}
= 0 in B1,

gα,k(x) := ρk(1−σ(1+θα))fα
(
ρkx
)
.

また，
σ ≤ min

{
1

1 + θ∗
,− logρ 2

}
, ηk+1 := ηk + ρkσξk

とすると，補題 3.4より帰納法のための不等式が導かれる．但し，ξk ∈ Rn は uk に対応する補題 3.4

に由来するベクトルである．

主結果の証明. r ∈ (0, 1)を固定する．命題 3.5の ρを用い ρk+1 ≤ r ≤ ρk となる k ∈ N ∪ {0}を取
り定理 2.6を利用すればよい．
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