Holder estimates on the gradient of viscosity solutions of
degenerate Bellman type equations involving p-Laplacian

type operators
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EE 1.1 (KM, £ (resp. ) FEHiRAE uw € USC(By) (resp. LSC(B1)) %% (1.2) ofitES
iRt (resp. ) iX, ROMEDBKHIIODZL T3

'L, peC?(By) XL, u— ¢ DRFTRKME (resp. F/IMB) % z¢ € B TH27%51Z,
F(20,u(x0), Du(zo), D*u(xg)) < (resp. >)0
DI D LD,
u € C(By) 2 (1.2) DKM L X, v (1.2) ORMESREOREERTHZ 2T 5.
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(z,7,q) € BIXRXR" !fEED X <Y 7% XY € S" IZHL,

F(z,r,q,X) > F(z,r,q,Y)
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E&E 1.3 (—HEMEERR). F: B xRxR? xS" — R 2HEMELR 0 < X < A O—FEFEMEE
HFZELIE, EED (z,7,q) EBI xRxR* ¥ fFED X <Y ¥4 5% X, Y € S ITHL,

Ar(Y — X) < F(z,r,q,X) — Fz,r,q,Y) < Atr(Y — X)
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EE 1.4 (Pucci fEAR). 0 <A< A rT3. XTHEZLNZEHAE PE S — R Pucci /A

RN .
P(X) :=PyA(X) = —A Z Z
pu(X)<0 n(X)=>0
P+(X) ,P;_A =—A Z X)—2A Z w(X
1(X)<0 H(X)>0

ZIT, p(X)Z2 X eS" DlEHELT5.

A5 1.5. Pucci fEHZEZ AW 2 & —BEMAEHBERROAELTREN I ONE B TES .
P (Y - X)< F(x,r,q,Y) — F(z,7,¢, X) <PT(Y - X) (X<Y inS").
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2 FFEIE
2.1 RZE

AFETIE, KD 3ODIREL T 5.
RE A. Oo,po (a0 € A) BERL T 5.

(Al) Z2TD a € AIWTHL py > 1 HD p* :=supyes Pa < 00, s :=infaecapy > 1;
(A2) Z2TD aec AITHL 0, >0 HD 0" :=sup,cg b < o0;
(A3) ®TD aec AIRMLU fo € C(B1)NL>®(By) Ho supyeallfallLoe(p,) < oo

RE B. ps :=1A(pe —1),p* =1V (p*—1) B &, XDCordes-Landis BEMH ([17]) Ziili
VA M MR

(B2 T0/N&7% B=p8(n)>0BFEL, p* < (14 B)u. HELD D, ]
RE C. po >2 Vae A) £72id p, € (1,2) (Vae A) &5 5.

ROLEERNEIBTHS. BERELTWI2HEEZHHEL XS, 19 8 94Z, Caffarelli [4]
¥ Harnack DARZERERT Z & TRD Holder FHlliZFFEA L 7= -

T 2.1 ([1]). feCB)NL®(B1) L L, ue C(B)) & 2heh
P~ (D*u)=|f| in By, PYD%u)=-|f| inB
DA R ERE 55, ZOk, H2EMC >0k oec(0,1) BFEEL, WERGH
ullco.o (s, ,,) < C (l[ullee s,y + 1 fllLn (1))
DD, HL, C & o 3EMER N A T n OAKIFET 5.
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EIE 2.2 ([13]). 0 €(0,1),f€C(B1)NL>®(By) ¥ L, ue C(B) 2xhzh
P~ (D*u) = |f| in By, PY(D%*u)=—|f] inbB
DRIMES R KB 35, ZOK, D20/ RER B =F(n,0) >0 BFIEL,
A< (1+B)A
7BIE, ue CH (B, ) TH D I
[ulloroBy,q) < C (l[ullzee sy + 1 fll=(s1))

MDD, HL, C > 013 N\, 0,n DAKFET 3.



Improvement of Flatness Lemma& W\ 5 iz R 3 FRICEM 2.2 ZFH T 570, KE B »
PKETH2 (F3fieS).
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TR 2.3 (LAER). EABC LT 5. ZOB, EHC>0L0e(0,1)BFEL, (1.1) OER
DORNERE w € C(B1) 1& CH7(Byy2) TH Y, PHERHHI

[U}H—a,Bl/z <’ <HU||L°°(B1) + <223||fa||Lw(Bl)>w> (2.1)
DD AID. 72720, 0, :=infacablo >0, C ¥ ol n,p*, p., 0., 0" DAKFT 5.
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ull oo (By) < 3 sup || fall Lo (By) < €0 = €0(n,p™)
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sup {—|Du\9aAé\iu — fa(x)} =0 in By, (2.2)
acA

Aﬁi;gw::tr[(f—i-(pa—Q) Dw+ ¢ Dw+§> 2 }

|Dw+&| — |Dw + ¢
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EE 2.5 (FfEze C 23 /v [12)).

(W40, = sup p777

f o — 1 |
p>0,z€ B, lleI%Plnu Lo (B, (2))

HL, 0 €(0,1),r € (0,1),Py :={l(y) = (s,y) + t;s e R", t e R} TH 5. FMEEDFEHIZ [12] %
ZHLTIZLW.

FIE 2.6 (Holder #ifFABORIEOT [12]). 25 M >0 o € (0,1) PFEL, {FED B,.(x) C By
WX LR &3 n € R UL, ue CLo9(B) TH5 :

osc (u(y) — (n,y)) < Mrite.
yEB,.(x)

JEEC 2.7. FATBENIT 2 22T, B lda vk bROTHEE CLe 28, FEBE, FRICB 3
PRENFTT

osc (u(y) — (n,y)) < Mr'te
yeB,

ERRETHTHS. Fio, W u e CLo(B)) THIUL FARDEAIC BT B IRBIFFMAL D 170

EF 2.5 MUEM 2.6 BHIIZZF CLo Gl HARICE NS,
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Z DI T AR HE G EE ¥ Improvement of Flatness Lemma & 3% 5 o FERH 0 B #E & b X
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3.1 [EIFZEEERTETEM D SIEEA D 18TES

FIFEEE G M 2 R 32, RE B,C 3T RETH 5.

I 3.1 (FFLEEBET). E A ¥ (SR) £ 3%, 20K, FEDrc (0,1) 3L, »2EHK
C>0%vye (0,1 FEUTED (2.2) DR v € C(By) XL, PHEEHT

[u]o,y,B, < C
D DI, HL, C & vylidul EITHRELR.

€] BREVWEEIZZEEZBIE (doubling argument) [11] ZFAH T %23, /N WEEIE Imbert 23
FIERH U 7z Harnack OARES (0] 2 5.

8 3.2 (J¢| PREVEE). u WKELRWER vy > 0 BFIEL, €] > v B, y=1H15BK
ik Lipschtiz #HiASH D 32D.

SERR. xo € B,y #MOEET 5. “EEROETKO LREEZ, THRSBER L, Ly > 0 HTELE
L EROEDIFETH 2 Z e Zmtid L .
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sup {u(@) —uly) = Lig(jz = yl) = Lol — zo|* = Laly — 20"}, Lo := —5.
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B, MBI o OERI[10] 2B L UZLY. BEIATIEETH S Z L ERT. (7,Y) € B.xB,
% FRRZE BN E T 5. Ishii OFfE [7]) LRS- BROERID, FED S >01THL, 5
as € ADTEIEL,

—tr(A®X — AYY) < 2e0 + 6

A DI, HLU,

n* n” nY nY
A =14 (pa; —2)7— @ —, AV i =T+ (pa; —2)— @ —,
’ =l 07| ’ ¥ |nY|
T . = = T—Y — Y. = = T—Y —
nt = Llso(lw—yl)m_g| +2L2(T — x0) + &, ¥ := L1y’ (|7 — 7) =7 —2La(y — wo) +¢

THD, X =X(p),Y =Y(p),0 < p< 1% Ishii OMEICHKT 2. Ishii OFE [7] 1Ic X bEoH
LITHAERZRML |V & X - Y OlEGAEZFHES 2 2 23T, fHMiizHW2 &, XROTE
A EINS !

Cl,u,*Ll — CP’Q — 2(2L2 + p)C’3 < 2¢0 + o — 2e0 ((5 — 0)

{HL, C1,Co,Cs > 0% p,,p*,n ORIRET 2 ERTHS. 2, p=L;"* tBE, L —
ETHUITE. O

A 3.3 (|¢] DPEIVIEA). €] < v 2 BIE, v € (0,1) BB NER Holder FfiASH D 370,

A, Imbert 23 A U 725:fF [9] 258 L Harnack OAFE [9] 22X Jw. O

3.2 Improvement of Flatness Lemma D EEEAD IR

78 3.4 (Improvement of Flatness Lemma). IR A,B,C & (SR) £ 3%. H5 pec (0,1) BFFIE
L, fEED R & (2.2) DKM u € C(By) 1T L, REHMEZTNER 13D 5 !
o5 (u(e) = m.2) < 5,

SEEH. 3.1 & D, Ascoli-Arzela OFEM e WHIEZRH T 2 &, KEHZTH &, fon, um & B
u € C(By) BN 5 .
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HO7=dIR%ExR 05, m— oo &35, u Dl TR ER

sup {—|Dﬂ|9“A£iﬂ} =0 in B
acA
HEoNL. FEE, « PROGERXOMMEME 22 ZRTIENTES

sup {—AN 4} =0 in B. (3.1)
acA

A=, A= p* @ Pucci (FAZEEEZ (3.1) ICEH 22 2HWAT 2L, 55 0g € (0,1) BIFEL
i€ CHo0(By ) DRENB. WUT, FEH 2.6 LIERL 2.7 XD p 2 HO/NS CHB L FE. O



3.3 FHERDIEADIE
MR 3.4 ZHH L Tteration OFETEEREZRT.

8 3.5 (Iteration). & AB,C & (SR) & $%. % pe (0,1),0 € (0,1) BEEL, EED
(1.1) DKM v e C(By) & & ke NU{0} oL, REWMZT n € R* DFEET S :

_ < ok(+o)
Igg;(uuﬁ (M, ) < p

SERR. BUAHRWE TR T, RO u DR — V) Y By, ZF ., w, W0 U 3.4 2@ 54U
VAR
up(z) == p~kA+o) [u (pk:n) - <77k,pk:v>] :

KB, up RO EROMERR L 725 Z 2 DRE 5 .

suEl {—|Duk + pfkonkIOaAg];p,kgnkuk — gmk(x)} =0 in By,
ac

ga,k(x) — pk(lfa(lJr@a))fa (pkw) _

7z,
1
o < min {1—1—9*’ —log, 2} , M1 =Nk + P&

Y35k, 3.4 KDIFWED DO ARERPEINS. HL, & € R™ & up WSS 2 /i 3.4
WHHKRTZRZ b L THS. O

FRERDIHE. r € (0,1) ZEET 3. @E3S D p ZHV M <r<pF k2 ke NU{0} ZH
hEM 2.6 R TIUX X, O
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